Search results
Results from the WOW.Com Content Network
Photoautotrophs are organisms that can utilize light energy from sunlight and elements (such as carbon) from inorganic compounds to produce organic materials needed to sustain their own metabolism (i.e. autotrophy). Such biological activities are known as photosynthesis, and examples of such organisms include plants, algae and cyanobacteria.
Purple non-sulfur bacteria, green non-sulfur bacteria, and heliobacteria are examples of bacteria that carry out this scheme of photoheterotrophy. Other organisms, including halobacteria and flavobacteria [ 8 ] and vibrios [ 9 ] have purple-rhodopsin-based proton pumps that supplement their energy supply.
Most of the well-recognized phototrophs are autotrophic, also known as photoautotrophs, and can fix carbon. They can be contrasted with chemotrophs that obtain their energy by the oxidation of electron donors in their environments. Photoautotrophs are capable of synthesizing their own food from inorganic substances using light as an energy source.
Most photosynthetic organisms are photoautotrophs, which means that they are able to synthesize food directly from carbon dioxide and water using energy from light. However, not all organisms use carbon dioxide as a source of carbon atoms to carry out photosynthesis; photoheterotrophs use organic compounds, rather than carbon dioxide, as a ...
Herbivores and carnivores are examples of organisms that obtain carbon and electrons or hydrogen from living organic matter. Chemoorganotrophs are organisms which use the chemical energy in organic compounds as their energy source and obtain electrons or hydrogen from the organic compounds, including sugars (i.e. glucose), fats and proteins. [2]
The photoautotrophs are the main primary producers, converting the energy of the light into chemical energy through photosynthesis, ultimately building organic molecules from carbon dioxide, an inorganic carbon source. [3] Examples of chemolithotrophs are some archaea and bacteria (unicellular organisms) that produce biomass from the oxidation ...
Purple bacteria use bacteriochlorophyll and carotenoids to obtain the light energy for photosynthesis. Electron transfer and photosynthetic reactions occur at the cell membrane in the photosynthetic unit which is composed by the light-harvesting complexes LHI and LHII and the photosynthetic reaction centre where the charge separation reaction ...
Aerobic anoxygenic phototrophic bacteria (AAPBs) are Alphaproteobacteria and Gammaproteobacteria that are obligate aerobes that capture energy from light by anoxygenic photosynthesis. Anoxygenic photosynthesis is the phototrophic process where light energy is captured and stored as ATP. The production of oxygen is non-existent and, therefore ...