enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Scott's rule - Wikipedia

    en.wikipedia.org/wiki/Scott's_Rule

    Scott's rule is widely employed in data analysis software including R, [2] Python [3] and Microsoft Excel where it is the default bin selection method. [ 4 ] For a set of n {\displaystyle n} observations x i {\displaystyle x_{i}} let f ^ ( x ) {\displaystyle {\hat {f}}(x)} be the histogram approximation of some function f ( x ) {\displaystyle f ...

  3. Local binary patterns - Wikipedia

    en.wikipedia.org/wiki/Local_binary_patterns

    Multi-block LBP: the image is divided into many blocks, a LBP histogram is calculated for every block and concatenated as the final histogram. Volume Local Binary Pattern(VLBP): [ 11 ] VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index.

  4. Sturges's rule - Wikipedia

    en.wikipedia.org/wiki/Sturges's_rule

    Sturges's rule [1] is a method to choose the number of bins for a histogram.Given observations, Sturges's rule suggests using ^ = + ⁡ bins in the histogram. This rule is widely employed in data analysis software including Python [2] and R, where it is the default bin selection method.

  5. Histogram - Wikipedia

    en.wikipedia.org/wiki/Histogram

    A histogram is a visual representation of the distribution of quantitative data. To construct a histogram, the first step is to "bin" (or "bucket") the range of values— divide the entire range of values into a series of intervals—and then count how many values fall into each interval.

  6. Histogram equalization - Wikipedia

    en.wikipedia.org/wiki/Histogram_equalization

    Histogram equalization will work the best when applied to images with much higher color depth than palette size, like continuous data or 16-bit gray-scale images. There are two ways to think about and implement histogram equalization, either as image change or as palette change.

  7. Otsu's method - Wikipedia

    en.wikipedia.org/wiki/Otsu's_method

    This threshold is determined by minimizing intra-class intensity variance, or equivalently, by maximizing inter-class variance. [2] Otsu's method is a one-dimensional discrete analogue of Fisher's discriminant analysis, is related to Jenks optimization method, and is equivalent to a globally optimal k-means [3] performed on the intensity histogram.

  8. Freedman–Diaconis rule - Wikipedia

    en.wikipedia.org/wiki/Freedman–Diaconis_rule

    With the factor 2 replaced by approximately 2.59, the Freedman–Diaconis rule asymptotically matches Scott's Rule for data sampled from a normal distribution. Another approach is to use Sturges's rule : use a bin width so that there are about 1 + log 2 ⁡ n {\displaystyle 1+\log _{2}n} non-empty bins, however this approach is not recommended ...

  9. Image histogram - Wikipedia

    en.wikipedia.org/wiki/Image_histogram

    Histogram equalization is a popular example of these algorithms. Improvements in picture brightness and contrast can thus be obtained. In the field of computer vision, image histograms can be useful tools for thresholding. Because the information contained in the graph is a representation of pixel distribution as a function of tonal variation ...