enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]

  3. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  4. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Given the Euler's totient function φ(m), any set of φ(m) integers that are relatively prime to m and mutually incongruent under modulus m is called a reduced residue system modulo m. [5] The set {5, 15} from above, for example, is an instance of a reduced residue system modulo 4.

  5. Modulus - Wikipedia

    en.wikipedia.org/wiki/Modulus

    Bulk modulus, a measure of compression resistance; Elastic modulus, a measure of stiffness; Shear modulus, a measure of elastic stiffness; Young's modulus, a specific elastic modulus; Modulo operation (a % b, mod(a, b), etc.), in both math and programming languages; results in remainder of a division; Casting modulus used in Chvorinov's rule.

  6. Modulus (algebraic number theory) - Wikipedia

    en.wikipedia.org/wiki/Modulus_(algebraic_number...

    In mathematics, in the field of algebraic number theory, a modulus (plural moduli) (or cycle, [1] or extended ideal [2]) is a formal product of places of a global field (i.e. an algebraic number field or a global function field). It is used to encode ramification data for abelian extensions of a global field.

  7. Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_little_theorem

    This result may be deduced from Fermat's little theorem by the fact that, if p is an odd prime, then the integers modulo p form a finite field, in which 1 modulo p has exactly two square roots, 1 and −1 modulo p. Note that a d ≡ 1 (mod p) holds trivially for a ≡ 1 (mod p), because the congruence relation is compatible with exponentiation.

  8. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    This derives from the fact that a sequence (g k modulo n) always repeats after some value of k, since modulo n produces a finite number of values. If g is a primitive root modulo n and n is prime, then the period of repetition is n − 1. Permutations created in this way (and their circular shifts) have been shown to be Costas arrays.

  9. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n. Hence another name is the group of primitive residue classes modulo n. In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo n.