Search results
Results from the WOW.Com Content Network
Like B-trees, R-trees are suitable for large data sets and databases, where nodes can be paged to memory when needed, and the whole tree cannot be kept in main memory. Even if data can be fit in memory (or cached), the R-trees in most practical applications will usually provide performance advantages over naive check of all objects when the ...
In data processing R*-trees are a variant of R-trees used for indexing spatial information. R*-trees have slightly higher construction cost than standard R-trees, as the data may need to be reinserted; but the resulting tree will usually have a better query performance. Like the standard R-tree, it can store both point and spatial data.
Hilbert R-tree, an R-tree variant, is an index for multidimensional objects such as lines, regions, 3-D objects, or high-dimensional feature-based parametric objects. It can be thought of as an extension to B+-tree for multidimensional objects.
Pages in category "R-tree" The following 6 pages are in this category, out of 6 total. This list may not reflect recent changes. ...
In these trees, each node contains one of the input points. Since the division of the plane is decided by the order of point-insertion, the tree's height is sensitive to and dependent on insertion order. Inserting in a "bad" order can lead to a tree of height linear in the number of input points (at which point it becomes a linked-list).
For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures. This list of terms was originally derived from the index of that document, and is in the public domain, as it was compiled by a Federal Government employee as part of a Federal Government work. Some of the terms defined are:
R+ trees are a compromise between R-trees and kd-trees: they avoid overlapping of internal nodes by inserting an object into multiple leaves if necessary. Coverage is the entire area to cover all related rectangles. Overlap is the entire area which is contained in two or more nodes. [1]
The Z-ordering can be used to efficiently build a quadtree (2D) or octree (3D) for a set of points. [4] [5] The basic idea is to sort the input set according to Z-order.Once sorted, the points can either be stored in a binary search tree and used directly, which is called a linear quadtree, [6] or they can be used to build a pointer based quadtree.