Search results
Results from the WOW.Com Content Network
In robotics, Cartesian parallel manipulators are manipulators that move a platform using parallel-connected kinematic linkages ('limbs') lined up with a Cartesian coordinate system. Multiple limbs connect the moving platform to a base. Each limb is driven by a linear actuator and the linear actuators are mutually perpendicular.
Cartesian coordinate robots are controlled by mutually perpendicular active prismatic P joints that are aligned with the X, Y, Z axes of a Cartesian coordinate system. [ 6 ] [ 7 ] Although not strictly ‘robots’, other types of manipulators , such as computer numerically controlled (CNC) machines, 3D printers or pen plotters , also have the ...
Delta robot kinematics (green arms are fixed length, at 90° to their blue axis that they rotate about) Over-actuated planar delta robot. The delta robot is a parallel robot, i.e. it consists of multiple kinematic chains connecting the base with the end-effector. The robot can also be seen as a spatial generalisation of a four-bar linkage. [9]
In space, the Canadarm and its successor Canadarm2 are examples of multi degree of freedom robotic arms. These robotic arms have been used to perform a variety of tasks such as inspection of the Space Shuttle using a specially deployed boom with cameras and sensors attached at the end effector, and also satellite deployment and retrieval manoeuvres from the cargo bay of the Space Shuttle.
Cartesian robots, [5] also called rectilinear, gantry robots, and x-y-z robots [6] have three prismatic joints for the movement of the tool and three rotary joints for its orientation in space. To be able to move and orient the effector organ in all directions, such a robot needs 6 axes (or degrees of freedom).
A manipulator can move an object with up to 6 degrees of freedom (DoF), determined by 3 translation 3T and 3 rotation 3R coordinates for full 3T3R mobility. However, when a manipulation task requires less than 6 DoF, the use of lower mobility manipulators, with fewer than 6 DoF, may bring advantages in terms of simpler architecture, easier control, faster motion and lower cost. [2]
Epson industrial robot at Hannover Messe 2012. EPSON Robots is the robotics design and manufacturing department of Japanese corporation Seiko Epson, the brand-name watch and computer printer producer. Epson started the production of robots in 1980. [1] Epson manufactures Cartesian, SCARA and 6-axis industrial robots for factory automation.
In mechatronics engineering, the Denavit–Hartenberg parameters (also called DH parameters) are the four parameters associated with the DH convention for attaching reference frames to the links of a spatial kinematic chain, or robot manipulator.