Search results
Results from the WOW.Com Content Network
In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way".
Participants would experience each level of the repeated variables but only one level of the between-subjects variable. Andy Field (2009) [1] provided an example of a mixed-design ANOVA in which he wants to investigate whether personality or attractiveness is the most important quality for individuals seeking a partner. In his example, there is ...
The formula for the one-way ANOVA F-test statistic is =, or =. The "explained variance", or "between-group variability" is = (¯ ¯) / where ¯ denotes the sample mean in the i-th group, is the number of observations in the i-th group, ¯ denotes the overall mean of the data, and denotes the number of groups.
Factorial ANOVA is used when there is more than one factor. Repeated measures ANOVA is used when the same subjects are used for each factor (e.g., in a longitudinal study). Multivariate analysis of variance (MANOVA) is used when there is more than one response variable.
The one factor model can be thought of as a generalization of the two sample t-test. That is, the two sample t-test is a test of the hypothesis that two population means are equal. The one factor ANOVA tests the hypothesis that k population means are equal. The standard ANOVA assumes that the errors (i.e., residuals) are normally distributed.
This software provides a comprehensive set of capabilities including frequencies, cross-tabs comparison of means (t-tests and one-way ANOVA), linear regression, logistic regression, reliability (Cronbach's alpha, not failure or Weibull), and re-ordering data, non-parametric tests, factor analysis, cluster analysis, principal components analysis, chi-square analysis and more.
To determine if there is a significant difference between two means with equal sample sizes, the Newman–Keuls method uses a formula that is identical to the one used in Tukey's range test, which calculates the q value by taking the difference between two sample means and dividing it by the standard error:
The parametric equivalent of the Kruskal–Wallis test is the one-way analysis of variance (ANOVA). A significant Kruskal–Wallis test indicates that at least one sample stochastically dominates one other sample. The test does not identify where this stochastic dominance occurs or for how many pairs of groups stochastic dominance obtains.