Search results
Results from the WOW.Com Content Network
The study of calculus on differentiable manifolds is known as differential geometry. "Differentiability" of a manifold has been given several meanings, including: continuously differentiable, k-times differentiable, smooth (which itself has many meanings), and analytic.
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus , integral calculus , linear algebra and multilinear algebra .
In differential geometry, a G-structure on an n-manifold M, for a given structure group [1] G, is a principal G-subbundle of the tangent frame bundle FM (or GL(M)) of M.. The notion of G-structures includes various classical structures that can be defined on manifolds, which in some cases are tensor fields.
Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds are topological manifolds by definition. Other types of manifolds are formed by adding structure to a topological manifold (e.g. differentiable manifolds are topological manifolds equipped with a differential structure ).
In differential geometry, a -structure is an important type of G-structure that can be defined on a smooth manifold. If M is a smooth manifold of dimension seven, then a G 2-structure is a reduction of structure group of the frame bundle of M to the compact, exceptional Lie group G 2.
Spivak, Michael (1999) A Comprehensive Introduction to Differential Geometry (3rd edition) Publish or Perish Inc. Encyclopedic five-volume series presenting a systematic treatment of the theory of manifolds, Riemannian geometry, classical differential geometry, and numerous other topics at the first- and second-year graduate levels.
A Kähler manifold is a Riemannian manifold of even dimension whose holonomy group is contained in the unitary group (). [3] Equivalently, there is a complex structure on the tangent space of at each point (that is, a real linear map from to itself with =) such that preserves the metric (meaning that (,) = (,)) and is preserved by parallel transport.
In vector calculus and differential geometry the generalized Stokes theorem (sometimes with apostrophe as Stokes' theorem or Stokes's theorem), also called the Stokes–Cartan theorem, [1] is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus.