enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spatial analysis - Wikipedia

    en.wikipedia.org/wiki/Spatial_analysis

    It is also possible to exploit ancillary data, for example, using property values as a guide in a spatial sampling scheme to measure educational attainment and income. Spatial models such as autocorrelation statistics, regression and interpolation (see below) can also dictate sample design. [citation needed]

  3. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    The autoregressive model specifies that the output variable depends linearly on its own previous values and on a stochastic term (an imperfectly predictable term); thus the model is in the form of a stochastic difference equation (or recurrence relation) which should not be confused with a differential equation.

  4. Indicators of spatial association - Wikipedia

    en.wikipedia.org/wiki/Indicators_of_spatial...

    Indicators of spatial association are statistics that evaluate the existence of clusters in the spatial arrangement of a given variable. For instance, if we are studying cancer rates among census tracts in a given city local clusters in the rates mean that there are areas that have higher or lower rates than is to be expected by chance alone; that is, the values occurring are above or below ...

  5. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    The general ARMA model was described in the 1951 thesis of Peter Whittle, who used mathematical analysis (Laurent series and Fourier analysis) and statistical inference. [12] [13] ARMA models were popularized by a 1970 book by George E. P. Box and Jenkins, who expounded an iterative (Box–Jenkins) method for choosing and estimating them. This ...

  6. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    Autoregressive model. Use the partial autocorrelation plot to help identify the order. One or more spikes, rest are essentially zero (or close to zero) Moving average model, order identified by where plot becomes zero. Decay, starting after a few lags Mixed autoregressive and moving average model. All zero or close to zero

  7. Talk:Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Talk:Autoregressive_model

    We also know that real power usage varies considerably, for example during peak usage periods vs off-peak energy usages. Using an autoregressive model, we can learn from previous instances and predict the next power value. (Picture of example) — Preceding unsigned comment added by 208.127.244.182 00:22, 30 November 2012 (UTC)

  8. Autoregressive conditional heteroskedasticity - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_conditional...

    Spatial GARCH processes by Otto, Schmid and Garthoff (2018) [15] are considered as the spatial equivalent to the temporal generalized autoregressive conditional heteroscedasticity (GARCH) models. In contrast to the temporal ARCH model, in which the distribution is known given the full information set for the prior periods, the distribution is ...

  9. Moran's I - Wikipedia

    en.wikipedia.org/wiki/Moran's_I

    The fact that Moran's I is a summation of individual cross products is exploited by the "local indicators of spatial association" (LISA) to evaluate the clustering in those individual units by calculating Local Moran's I for each spatial unit and evaluating the statistical significance for each I i.