enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Texture synthesis - Wikipedia

    en.wikipedia.org/wiki/Texture_synthesis

    Texture synthesis is the process of algorithmically constructing a large digital image from a small digital sample image by taking advantage of its structural content. It is an object of research in computer graphics and is used in many fields, amongst others digital image editing, 3D computer graphics and post-production of films.

  3. Neural style transfer - Wikipedia

    en.wikipedia.org/wiki/Neural_Style_Transfer

    The original paper used a VGG-19 architecture [5] that has been pre-trained to perform object recognition using the ImageNet dataset. In 2017, Google AI introduced a method [6] that allows a single deep convolutional style transfer network to learn multiple styles at the same time. This algorithm permits style interpolation in real-time, even ...

  4. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    Once the network parameters have converged an additional training step is performed using the in-domain data to fine-tune the network weights, this is known as transfer learning. Furthermore, this technique allows convolutional network architectures to successfully be applied to problems with tiny training sets.

  5. Rendering (computer graphics) - Wikipedia

    en.wikipedia.org/wiki/Rendering_(computer_graphics)

    Historically, rendering was called image synthesis [6]: xxi but today this term is likely to mean AI image generation. [7] The term "neural rendering" is sometimes used when a neural network is the primary means of generating an image but some degree of control over the output image is provided. [8]

  6. DeepDream - Wikipedia

    en.wikipedia.org/wiki/DeepDream

    DeepDream is a computer vision program created by Google engineer Alexander Mordvintsev that uses a convolutional neural network to find and enhance patterns in images via algorithmic pareidolia, thus creating a dream-like appearance reminiscent of a psychedelic experience in the deliberately overprocessed images.

  7. Computer vision - Wikipedia

    en.wikipedia.org/wiki/Computer_vision

    Simplified example of training a neural network in object detection: The network is trained by multiple images that are known to depict starfish and sea urchins, which are correlated with "nodes" that represent visual features. The starfish match with a ringed texture and a star outline, whereas most sea urchins match with a striped texture and ...

  8. AlexNet - Wikipedia

    en.wikipedia.org/wiki/AlexNet

    AlexNet contains eight layers: the first five are convolutional layers, some of them followed by max-pooling layers, and the last three are fully connected layers. The network, except the last layer, is split into two copies, each run on one GPU. [1]

  9. LeNet - Wikipedia

    en.wikipedia.org/wiki/LeNet

    LeNet-5 architecture (overview). LeNet is a series of convolutional neural network structure proposed by LeCun et al.. [1] The earliest version, LeNet-1, was trained in 1989.In general, when "LeNet" is referred to without a number, it refers to LeNet-5 (1998), the most well-known version.