Search results
Results from the WOW.Com Content Network
In telecommunication, a convolutional code is a type of error-correcting code that generates parity symbols via the sliding application of a boolean polynomial function to a data stream. The sliding application represents the 'convolution' of the encoder over the data, which gives rise to the term 'convolutional coding'.
The example encoder is composed of a 16-state outer convolutional code and a 2-state inner convolutional code linked by an interleaver. The natural code rate of the configuration shown is 1/4, however, the inner and/or outer codes may be punctured to achieve higher code rates as needed.
A convolutional code that is terminated is also a 'block code' in that it encodes a block of input data, but the block size of a convolutional code is generally arbitrary, while block codes have a fixed size dictated by their algebraic characteristics. Types of termination for convolutional codes include "tail-biting" and "bit-flushing".
The LDPC code, in contrast, uses many low depth constituent codes (accumulators) in parallel, each of which encode only a small portion of the input frame. The many constituent codes can be viewed as many low depth (2 state) "convolutional codes" that are connected via the repeat and distribute operations. The repeat and distribute operations ...
The commonly used rule of thumb of a truncation depth of five times the memory (constraint length K-1) of a convolutional code is accurate only for rate 1/2 codes. For an arbitrary rate, an accurate rule of thumb is 2.5(K - 1)/(1−r) where r is the code rate. [1]
Linear block codes; Convolutional codes; It analyzes the following three properties of a code – mainly: [citation needed] Code word length; Total number of valid code words; The minimum distance between two valid code words, using mainly the Hamming distance, sometimes also other distances like the Lee distance
The Reed–Muller code RM(r, m) has message length = = and block length =. One way to define an encoding for this code is based on the evaluation of multilinear polynomials with m variables and total degree at most r.
The description above is given for what is now called a serially concatenated code. Turbo codes, as described first in 1993, implemented a parallel concatenation of two convolutional codes, with an interleaver between the two codes and an iterative decoder that passes information forth and back between the codes. [6]