enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    The centers of four squares all constructed either internally or externally on the sides of a parallelogram are the vertices of a square. [8] If two lines parallel to sides of a parallelogram are constructed concurrent to a diagonal, then the parallelograms formed on opposite sides of that diagonal are equal in area. [8]

  3. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    A rhombus has an axis of symmetry through each pair of opposite vertex angles, while a rectangle has an axis of symmetry through each pair of opposite sides. The diagonals of a rhombus intersect at equal angles, while the diagonals of a rectangle are equal in length. The figure formed by joining the midpoints of the sides of a rhombus is a ...

  4. Parallelogon - Wikipedia

    en.wikipedia.org/wiki/Parallelogon

    Parallelogons have an even number of sides and opposite sides that are equal in length. A less obvious corollary is that parallelogons can only have either four or six sides; [1] Parallelogons have 180-degree rotational symmetry around the center. A four-sided parallelogon is called a parallelogram.

  5. Rhomboid - Wikipedia

    en.wikipedia.org/wiki/Rhomboid

    Traditionally, in two-dimensional geometry, a rhomboid is a parallelogram in which adjacent sides are of unequal lengths and angles are non-right angled.. The terms "rhomboid" and "parallelogram" are often erroneously conflated with each other (i.e, when most people refer to a "parallelogram" they almost always mean a rhomboid, a specific subtype of parallelogram); however, while all rhomboids ...

  6. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    In mathematics, the simplest form of the parallelogram law (also called the parallelogram identity) belongs to elementary geometry. It states that the sum of the squares of the lengths of the four sides of a parallelogram equals the sum of the squares of the lengths of the two diagonals. We use these notations for the sides: AB, BC, CD, DA.

  7. Trapezoid - Wikipedia

    en.wikipedia.org/wiki/Trapezoid

    The ratio of the areas of each pair of adjacent triangles is the same as that between the lengths of the parallel sides. [13] Let the trapezoid have vertices A, B, C, and D in sequence and have parallel sides AB and DC. Let E be the intersection of the diagonals, and let F be on side DA and G be on side BC such that FEG is parallel to AB and CD.

  8. Isosceles trapezoid - Wikipedia

    en.wikipedia.org/wiki/Isosceles_trapezoid

    Note that a non-rectangular parallelogram is not an isosceles trapezoid because of the second condition, or because it has no line of symmetry. In any isosceles trapezoid, two opposite sides (the bases) are parallel, and the two other sides (the legs) are of equal length (properties shared with the parallelogram), and the diagonals have equal ...

  9. Pappus's area theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_area_theorem

    The extended parallelogram sides DE and FG intersect at H. The line segment AH now "becomes" the side of the third parallelogram BCML attached to the triangle side BC, i.e., one constructs line segments BL and CM over BC, such that BL and CM are a parallel and equal in length to AH.