Search results
Results from the WOW.Com Content Network
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...
The sequence () is decreasing and has positive terms. In fact, for all : >, because it is an integral of a non-negative continuous function which is not identically zero; + = + = () () >, again because the last integral is of a non-negative continuous function.
The last expression is the logarithmic mean. = ( >) = (>) (the Gaussian integral) = (>) = (, >) (+) = (>)(+ +) = (>)= (>) (see Integral of a Gaussian function
In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions.Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely and and then integrated.
Let (,) be an integral kernel, and consider the homogeneous equation, the Fredholm integral equation, (,) =and the inhomogeneous equation (,) = ().The Fredholm alternative is the statement that, for every non-zero fixed complex number, either the first equation has a non-trivial solution, or the second equation has a solution for all ().
The continuous problem is broken into discrete intervals; quadrature or numerical integration determines the weights and locations of representative points for the integral. The problem becomes a system of linear equations with n {\displaystyle n} equations and n {\displaystyle n} unknowns, and the underlying function is implicitly represented ...
Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments:
The Riemann–Stieltjes integral admits integration by parts in the form () = () () ()and the existence of either integral implies the existence of the other. [2]On the other hand, a classical result [3] shows that the integral is well-defined if f is α-Hölder continuous and g is β-Hölder continuous with α + β > 1 .