Search results
Results from the WOW.Com Content Network
A typical finite-dimensional mixture model is a hierarchical model consisting of the following components: . N random variables that are observed, each distributed according to a mixture of K components, with the components belonging to the same parametric family of distributions (e.g., all normal, all Zipfian, etc.) but with different parameters
The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.
Model-based clustering [1] based on a statistical model for the data, usually a mixture model. This has several advantages, including a principled statistical basis for clustering, and ways to choose the number of clusters, to choose the best clustering model, to assess the uncertainty of the clustering, and to identify outliers that do not ...
Gaussian mixture model, a statistical probabilistic model; Google Map Maker, a public cartography project; GMM, IATA code for Gamboma Airport in the Republic of the Congo; Good Mythical Morning, an online morning talk show hosted by YouTubers, Rhett and Link; Global Marijuana March, a worldwide demonstration associated with cannabis culture
A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models (Technical Report TR-97-021). International Computer Science Institute. includes a simplified derivation of the EM equations for Gaussian Mixtures and Gaussian Mixture Hidden Markov Models.
In probability and statistics, a mixture distribution is the probability distribution of a random variable that is derived from a collection of other random variables as follows: first, a random variable is selected by chance from the collection according to given probabilities of selection, and then the value of the selected random variable is realized.
This means that if we test the null hypothesis that the center of a Gaussian scale mixture distribution is 0, say, then t n G (x) (x ≥ 0) is the infimum of all monotone nondecreasing functions u(x) ≥ 1/2, x ≥ 0 such that if the critical values of the test are u −1 (1 − α), then the significance level is at most α ≥ 1/2 for all ...
One prominent method is known as Gaussian mixture models (using the expectation-maximization algorithm). Here, the data set is usually modeled with a fixed (to avoid overfitting) number of Gaussian distributions that are initialized randomly and whose parameters are iteratively optimized to better fit the data set.