enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bairstow's method - Wikipedia

    en.wikipedia.org/wiki/Bairstow's_method

    In numerical analysis, Bairstow's method is an efficient algorithm for finding the roots of a real polynomial of arbitrary degree. The algorithm first appeared in the appendix of the 1920 book Applied Aerodynamics by Leonard Bairstow. [1] [non-primary source needed] The algorithm finds the roots in complex conjugate pairs using only real ...

  3. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions. Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables.

  4. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.

  5. Quadratic assignment problem - Wikipedia

    en.wikipedia.org/wiki/Quadratic_assignment_problem

    The quadratic assignment problem (QAP) is one of the fundamental combinatorial optimization problems in the branch of optimization or operations research in mathematics, from the category of the facilities location problems first introduced by Koopmans and Beckmann. [1] The problem models the following real-life problem:

  6. Chakravala method - Wikipedia

    en.wikipedia.org/wiki/Chakravala_method

    The chakravala method (Sanskrit: चक्रवाल विधि) is a cyclic algorithm to solve indeterminate quadratic equations, including Pell's equation.It is commonly attributed to Bhāskara II, (c. 1114 – 1185 CE) [1] [2] although some attribute it to Jayadeva (c. 950 ~ 1000 CE). [3]

  7. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    It is also used for graphing quadratic functions, deriving the quadratic formula, and more generally in computations involving quadratic polynomials, for example in calculus evaluating Gaussian integrals with a linear term in the exponent, [2] and finding Laplace transforms. [3] [4]

  8. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    For example, a quadratic for the numerator and a cubic for the denominator is identified as a quadratic/cubic rational function. The rational function model is a generalization of the polynomial model: rational function models contain polynomial models as a subset (i.e., the case when the denominator is a constant).

  9. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    Popular solver with an API for several programming languages. Free for academics. MOSEK: A solver for large scale optimization with API for several languages (C++, java, .net, Matlab and python) TOMLAB: Supports global optimization, integer programming, all types of least squares, linear, quadratic and unconstrained programming for MATLAB.