Search results
Results from the WOW.Com Content Network
In chemistry, a reaction coordinate [1] is an abstract one-dimensional coordinate chosen to represent progress along a reaction pathway. Where possible it is usually a geometric parameter that changes during the conversion of one or more molecular entities, such as bond length or bond angle. For example, in the homolytic dissociation of ...
An illustrative example is the effect of catalysts to speed the decomposition of hydrogen peroxide into water and oxygen: . 2 H 2 O 2 → 2 H 2 O + O 2. This reaction proceeds because the reaction products are more stable than the starting compound, but this decomposition is so slow that hydrogen peroxide solutions are commercially available.
Reaction Coordinate. (A) Uncatalyzed (B) Catalyzed (C) Catalyzed with discrete intermediates (transition states) Most metal surface reactions occur by chain propagation in which catalytic intermediates are cyclically produced and consumed. [8] Two main mechanisms for surface reactions can be described for A + B → C. [2]
Figure 6:Reaction Coordinate Diagrams showing reactions with 0, 1 and 2 intermediates: The double-headed arrow shows the first, second and third step in each reaction coordinate diagram. In all three of these reactions the first step is the slow step because the activation energy from the reactants to the transition state is the highest.
Articles on the Monsanto process, the Wacker process, and the Heck reaction show catalytic cycles. Catalytic cycle for conversion of A and B into C. A catalytic cycle is not necessarily a full reaction mechanism. For example, it may be that the intermediates have been detected, but it is not known by which mechanisms the actual elementary ...
A catalytic triad is a set of three coordinated amino acid residues that can be found in the active site of some enzymes. [1] [2] Catalytic triads are most commonly found in hydrolase and transferase enzymes (e.g. proteases, amidases, esterases, acylases, lipases and β-lactamases).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In this type of plot (Figure 1), each axis represents a unique reaction coordinate, the corners represent local minima along the potential surface such as reactants, products or intermediates and the energy axis projects vertically out of the page. Changing a single reaction parameter can change the height of one or more of the corners of the plot.