Search results
Results from the WOW.Com Content Network
A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. [1] In many problems, a greedy strategy does not produce an optimal solution, but a greedy heuristic can yield locally optimal solutions that approximate a globally optimal solution in a reasonable amount of time.
Longest-processing-time-first (LPT) is a greedy algorithm for job scheduling.The input to the algorithm is a set of jobs, each of which has a specific processing-time.There is also a number m specifying the number of machines that can process the jobs.
In computer science, greedy number partitioning is a class of greedy algorithms for multiway number partitioning. The input to the algorithm is a set S of numbers, and a parameter k. The required output is a partition of S into k subsets, such that the sums in the subsets are as nearly equal as possible. Greedy algorithms process the numbers ...
Another example is attempting to make 40 US cents without nickels (denomination 25, 10, 1) with similar result — the greedy chooses seven coins (25, 10, and 5 × 1), but the optimal is four (4 × 10). A coin system is called "canonical" if the greedy algorithm always solves its change-making problem optimally.
An example of such an input for = is pictured on the right. Inapproximability results show that the greedy algorithm is essentially the best-possible polynomial time approximation algorithm for set cover up to lower order terms (see Inapproximability results below), under plausible
List scheduling is a greedy algorithm for Identical-machines scheduling.The input to this algorithm is a list of jobs that should be executed on a set of m machines. The list is ordered in a fixed order, which can be determined e.g. by the priority of executing the jobs, or by their order of arrival.
Pages in category "Greedy algorithms" The following 9 pages are in this category, out of 9 total. This list may not reflect recent changes. A. A* search algorithm; B.
The path graph with four vertices provides the simplest example of a graph whose chromatic number differs from its Grundy number. This graph can be colored with two colors, but its Grundy number is three: if the two endpoints of the path are colored first, the greedy coloring algorithm will use three colors for the whole graph.