Search results
Results from the WOW.Com Content Network
The conditional expectation of rainfall for an otherwise unspecified day known to be (conditional on being) in the month of March, is the average of daily rainfall over all 310 days of the ten–year period that fall in March. Similarly, the conditional expectation of rainfall conditional on days dated March 2 is the average of the rainfall ...
Conditional probabilities, conditional expectations, and conditional probability distributions are treated on three levels: discrete probabilities, probability density functions, and measure theory. Conditioning leads to a non-random result if the condition is completely specified; otherwise, if the condition is left random, the result of ...
To do this, instead of computing the conditional probability of failure, the algorithm computes the conditional expectation of Q and proceeds accordingly: at each interior node, there is some child whose conditional expectation is at most (at least) the node's conditional expectation; the algorithm moves from the current node to such a child ...
Conditional expectation; Expectation (epistemic) Expectile – related to expectations in a way analogous to that in which quantiles are related to medians; Law of total expectation – the expected value of the conditional expected value of X given Y is the same as the expected value of X; Median – indicated by in a drawing above
In probability theory, regular conditional probability is a concept that formalizes the notion of conditioning on the outcome of a random variable. The resulting conditional probability distribution is a parametrized family of probability measures called a Markov kernel .
Conditional expectation; Conditional probability distribution; Conditional probability table; Conditional variance; Conditioning (probability) Cue validity; L.
In statistics, kernel regression is a non-parametric technique to estimate the conditional expectation of a random variable.The objective is to find a non-linear relation between a pair of random variables X and Y.
In words: the variance of Y is the sum of the expected conditional variance of Y given X and the variance of the conditional expectation of Y given X. The first term captures the variation left after "using X to predict Y", while the second term captures the variation due to the mean of the prediction of Y due to the randomness of X.