Search results
Results from the WOW.Com Content Network
The trp operon is a group of genes that are transcribed together, encoding the enzymes that produce the amino acid tryptophan in bacteria. The trp operon was first characterized in Escherichia coli , and it has since been discovered in many other bacteria. [ 1 ]
Mechanism of transcriptional attenuation of the trp operon. An example is the trp gene in bacteria. When there is a high level of tryptophan in the region, it is inefficient for the bacterium to synthesize more. When the RNA polymerase binds and transcribes the trp gene, the ribosome will start translating. (This differs from eukaryotic cells ...
A typical operon. In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. [1] The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splicing to create monocistronic mRNAs that are translated separately, i.e. several strands of mRNA that each encode a single gene product.
For example, the E. coli tryptophan repressor (TrpR) is only able to bind to DNA and repress transcription of the trp operon when its corepressor tryptophan is bound to it. TrpR in the absence of tryptophan is known as an aporepressor and is inactive in repressing gene transcription. [2]
Tryptophan repressor (or trp repressor) is a transcription factor involved in controlling amino acid metabolism. It has been best studied in Escherichia coli , where it is a dimeric protein that regulates transcription of the 5 genes in the tryptophan operon . [ 1 ]
Examples include the histidine (his) [18] [19] and tryptophan (trp) [20] biosynthetic operons. The term "attenuation" was introduced to describe the his operon. [ 18 ] While it is typically used to describe biosynthesis operons of amino acids and other metabolites, programmed transcription termination that does not occur at the end of a gene ...
The lac operon in the prokaryote E. coli consists of genes that produce enzymes to break down lactose. Its operon is an example of a prokaryotic silencer. The three functional genes in this operon are lacZ, lacY, and lacA. [6] The repressor gene, lacI, will produce the repressor protein LacI which is under allosteric regulation.
Antitermination provides a mechanism whereby one or more genes at the end of an operon can be switched either on or off, depending on the polymerase either recognizing or not recognizing the termination signal. Antitermination is used by some phages to regulate progression from one stage of gene expression to the next. The lambda gene N, codes ...