Search results
Results from the WOW.Com Content Network
Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane.
Let G 2 denote the subgroup of G generated by the point 0 + 1i. G 2 is a cyclic subgroup of order 4. For a prime p of form 4k + 1, let G p denote the subgroup of elements with denominator p n where n is a non-negative integer. G p is an infinite cyclic group, and the point (a 2 − b 2)/p + (2ab/p)i is a generator of G p.
All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same. For sin, cos and tan the unit-length radius forms the hypotenuse of the triangle that defines them. The reciprocal identities arise as ratios of sides in the triangles where this unit line is no longer the hypotenuse.
The area of the circle equals π times the shaded area. The area of the unit circle is π. π appears in formulae for areas and volumes of geometrical shapes based on circles, such as ellipses, spheres, cones, and tori. Below are some of the more common formulae that involve π. [153] The circumference of a circle with radius r is 2πr.
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.
where A is the area of an epicycloid with the smaller circle of radius r and the larger circle of radius kr (), assuming the initial point lies on the larger circle. A = ( − 1 ) k + 3 8 π a 2 {\displaystyle A={\frac {(-1)^{k}+3}{8}}\pi a^{2}}
is pi, the ratio of the circumference of a circle to its diameter. Euler's identity is named after the Swiss mathematician Leonhard Euler . It is a special case of Euler's formula e i x = cos x + i sin x {\displaystyle e^{ix}=\cos x+i\sin x} when evaluated for x = π {\displaystyle x=\pi } .
This formula can be interpreted as saying that the function e iφ is a unit complex number, i.e., it traces out the unit circle in the complex plane as φ ranges through the real numbers. Here φ is the angle that a line connecting the origin with a point on the unit circle makes with the positive real axis, measured counterclockwise and in ...