Search results
Results from the WOW.Com Content Network
Bromothymol blue acts as a weak acid in a solution. It can thus be in protonated or deprotonated form, appearing yellow or blue, respectively. It is bright aquamarine by itself, and greenish-blue in a neutral solution. The deprotonation of the neutral form results in a highly conjugated structure, accounting for the difference in color. An ...
Bromothymol blue is the indicator used in the agar, it changes to yellow in case of acid production during fermentation of lactose or changes to deep blue in case of alkalinization. Lactose-positive bacteria build yellow colonies. Bacteria which decarboxylate L-cystine cause an alkaline reaction and build deep blue colonies. [1]
Sucrose fermentation produces acid, which converts the colour of bromothymol blue or thymol blue. Two dyes rather than one make the medium produce an array of yellow, green, or blue so that differentiating among various Vibrio species is possible.
Solution: The main components of a universal indicator, in the form of a solution, are thymol blue, methyl red, bromothymol blue, and phenolphthalein. This mixture is important because each component loses or gains protons depending upon the acidity or alkalinity of the solution being tested. It is beneficial to use this type of universal ...
Bromophenol blue is also used as a dye. At neutral pH, the dye absorbs red light most strongly and transmits blue light. (Its peak absorbance is 590 nm at a basic pH of 12.) Solutions of the dye, therefore, are blue. At low pH, the dye absorbs ultraviolet and blue light most strongly and appears yellow in solution.
The increase in pH then causes color change in the bromothymol blue indicator, turning it blue. Under neutral conditions the medium remains a green color. The color change to blue is useful because growth on Simmons' citrate agar is often limited and would be hard to observe if it were not for the color change.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Methyl red produces a colour change from red to yellow in the range of pH 4 to 6 and the bromothymol blue changes from yellow to blue between pH 6 and 9. In the range 5 to 9 the strips show colours that change from orange at pH 5, passing through yellow and green to dark blue at pH 9. [6]