Search results
Results from the WOW.Com Content Network
TT: the maximum thickness in percent of chord, as in a four-digit NACA airfoil code. For example, the NACA 23112 profile describes an airfoil with design lift coefficient of 0.3 (0.15 × 2), the point of maximum camber located at 15% chord (5 × 3), reflex camber (1), and maximum thickness of 12% of chord length (12).
(VFR squawk code for airspace 5,000 feet (1,500 m) and below prior to 15 March 2007 when replaced by the international 7000 code for VFR traffic.) [5] 0022 Germany (VFR squawk code for airspace above 5,000 feet (1,500 m) – prior to 15 March 2007 when replaced by the international 7000 code for VFR traffic.) [5] 0025 Germany
In February 1976, work commenced to automate the methods contained in the USAF Stability and Control DATCOM, specifically those contained in sections 4, 5, 6 and 7.The work was performed by the McDonnell Douglas Corporation under contract with the United States Air Force in conjunction with engineers at the Air Force Flight Dynamics Laboratory in Wright-Patterson Air Force Base.
For example, an airfoil of the NACA 4-digit series such as the NACA 2415 (to be read as 2 – 4 – 15) describes an airfoil with a camber of 0.02 chord located at 0.40 chord, with 0.15 chord of maximum thickness. Finally, important concepts used to describe the airfoil's behaviour when moving through a fluid are:
The Joint Aircraft System/Component (JASC) Code Tables was a modified version of the Air Transport Association of America (ATA), Specification 100 code. It was developed by the FAA's, Regulatory Support Division (AFS-600). This code table was constructed by using the new JASC code four digit format, along with an abbreviated code title.
Provides a 4-digit octal identification code for the aircraft, set in the cockpit but assigned by the air traffic controller. Mode 3/A is often combined with Mode C to provide altitude information as well. [2] C: Provides the aircraft's pressure altitude and is usually combined with Mode 3/A to provide a combination of a 4-digit octal code and ...
Supercritical airfoils feature four main benefits: they have a higher drag-divergence Mach number, [21] they develop shock waves farther aft than traditional airfoils, [22] they greatly reduce shock-induced boundary layer separation, and their geometry allows more efficient wing design (e.g., a thicker wing and/or reduced wing sweep, each of which may allow a lighter wing).
English: Selected airfoils in nature and various vehicles, with their approximate chord length indicated. Sources for the shapes of the airfoils: Low-speed ULM wing: drawn over own photo of low-cost, low-speed ultralight