enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    The portion of the mass that is located at radii r < r 0 causes the same force at the radius r 0 as if all of the mass enclosed within a sphere of radius r 0 was concentrated at the center of the mass distribution (as noted above). The portion of the mass that is located at radii r > r 0 exerts no net gravitational force at the radius r 0 from

  3. Introduction to general relativity - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_general...

    The equivalence between inertia and gravity cannot explain tidal effects – it cannot explain variations in the gravitational field. [10] For that, a theory is needed which describes the way that matter (such as the large mass of the Earth) affects the inertial environment around it.

  4. Mass versus weight - Wikipedia

    en.wikipedia.org/wiki/Mass_versus_weight

    Nevertheless, one object will always weigh more than another with less mass if both are subject to the same gravity (i.e. the same gravitational field strength). In scientific contexts, mass is the amount of "matter" in an object (though "matter" may be difficult to define), but weight is the force exerted on an object's matter by gravity. [1]

  5. Mass in general relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_general_relativity

    The Bondi mass was introduced (Bondi, 1962) in a paper that studied the loss of mass of physical systems via gravitational radiation. The Bondi mass is also associated with a group of asymptotic symmetries, the BMS group at null infinity. Like the SPI group at spatial infinity, the BMS group at null infinity is infinite-dimensional, and it also ...

  6. General relativity - Wikipedia

    en.wikipedia.org/wiki/General_relativity

    In Newtonian gravity, the source is mass. In special relativity, mass turns out to be part of a more general quantity called the energy–momentum tensor, which includes both energy and momentum densities as well as stress: pressure and shear. [40] Using the equivalence principle, this tensor is readily generalized to curved spacetime.

  7. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force and 10 29 times weaker than the weak interaction.

  8. Gravitational energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_energy

    According to general relativity, mass distorts spacetime and gravity is a natural consequence of Newton's First Law. Mass tells spacetime how to bend, and spacetime tells mass how to move. In general relativity gravitational energy is extremely complex, and there is no single agreed upon definition of the concept.

  9. Equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Equivalence_principle

    In other words, passive gravitational mass must be proportional to inertial mass for objects, independent of their material composition if the weak equivalence principle is obeyed. The dimensionless Eötvös -parameter or Eötvös ratio η ( A , B ) {\displaystyle \eta (A,B)} is the difference of the ratios of gravitational and inertial masses ...