Search results
Results from the WOW.Com Content Network
Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).
Automatic clustering algorithms are algorithms that can perform clustering without prior knowledge of data sets. In contrast with other cluster analysis techniques, automatic clustering algorithms can determine the optimal number of clusters even in the presence of noise and outlier points. [1] [needs context]
The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]
The Jenks optimization method, also called the Jenks natural breaks classification method, is a data clustering method designed to determine the best arrangement of values into different classes. This is done by seeking to minimize each class's average deviation from the class mean, while maximizing each class's deviation from the means of the ...
Two points p and q are density-connected if there is a point o such that both p and q are reachable from o. Density-connectedness is symmetric. A cluster then satisfies two properties: All points within the cluster are mutually density-connected. If a point is density-reachable from some point of the cluster, it is part of the cluster as well.
In statistics, cluster analysis is the algorithmic grouping of objects into homogeneous groups based on numerical measurements. Model-based clustering [1] based on a statistical model for the data, usually a mixture model.
In cluster analysis, the elbow method is a heuristic used in determining the number of clusters in a data set. The method consists of plotting the explained variation as a function of the number of clusters and picking the elbow of the curve as the number of clusters to use.
The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri