Search results
Results from the WOW.Com Content Network
Denudation rates are usually much lower than the rates of uplift and average orogeny rates can be eight times the maximum average denudation. [24] The only areas at which there could be equal rates of denudation and uplift are active plate margins with an extended period of continuous deformation. [25] Denudation is measured in catchment-scale ...
Divergence rates are estimated from a variety of sources including ancestral DNA, fossil records and biographical events. [6] This use of molecular clocks to determine divergence is controversial because of its potential for inaccuracy and assumptions made in the model (such as consistent mutation rate for all branches) and is used mostly as an ...
For first order desorption, the activation energy is estimated from the temperature (T p) at which the desorption rate is a maximum. Using the equation for rate of desorption (Polyani Winer equation), one can find T p, and Redhead shows that the relationship between T p and E can be approximated to be linear, given that the ratio of the rate ...
The plateau principle is a mathematical model or scientific law originally developed to explain the time course of drug action (pharmacokinetics). [1] The principle has wide applicability in pharmacology, physiology, nutrition, biochemistry, and system dynamics.
Timing is important to wound healing. Critically, the timing of wound re-epithelialization can decide the outcome of the healing. [11] If the epithelization of tissue over a denuded area is slow, a scar will form over many weeks, or months; [12] [13] If the epithelization of a wounded area is fast, the healing will result in regeneration.
Physics – negentropy, stochastic processes, and the development of new physical techniques and instrumentation as well as their application. Quantum biology – The field of quantum biology applies quantum mechanics to biological objects and problems. Decohered isomers to yield time-dependent base substitutions. These studies imply ...
The dissociation rate constant is defined using K off. [2] The Michaelis-Menten constant is denoted by K m and is represented by the equation K m = (K off + K cat)/ K on [definition needed]. The rates that the enzyme binds and dissociates from the substrate are represented by K on and K off respectively.
Decomposition rates are low under very wet or very dry conditions. Decomposition rates are highest in damp, moist conditions with adequate levels of oxygen. Wet soils tend to become deficient in oxygen (this is especially true in wetlands), which slows microbial growth. In dry soils, decomposition slows as well, but bacteria continue to grow ...