Search results
Results from the WOW.Com Content Network
Each diagonal divides the quadrilateral into two congruent triangles. The sum of the squares of the sides equals the sum of the squares of the diagonals. (This is the parallelogram law.) It has rotational symmetry of order 2. The sum of the distances from any interior point to the sides is independent of the location of the point. [4]
Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.
An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...
For a given parallelogram consider an arbitrary inner parallelogram having as a diagonal as well. Furthermore there are two uniquely determined parallelograms G F H D {\displaystyle GFHD} and I B J F {\displaystyle IBJF} the sides of which are parallel to the sides of the outer parallelogram and which share the vertex F {\displaystyle F} with ...
Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem.
A perfect parallelepiped is a parallelepiped with integer-length edges, face diagonals, and space diagonals. In 2009, dozens of perfect parallelepipeds were shown to exist, [3] answering an open question of Richard Guy. One example has edges 271, 106, and 103, minor face diagonals 101, 266, and 255, major face diagonals 183, 312, and 323, and ...
Not every parallelogram is a rhombus, though any parallelogram with perpendicular diagonals (the second property) is a rhombus. In general, any quadrilateral with perpendicular diagonals, one of which is a line of symmetry, is a kite. Every rhombus is a kite, and any quadrilateral that is both a kite and parallelogram is a rhombus.
Each pair of opposite sides of the Varignon parallelogram are parallel to a diagonal in the original quadrilateral. A side of the Varignon parallelogram is half as long as the diagonal in the original quadrilateral it is parallel to. The area of the Varignon parallelogram equals half the area of the original quadrilateral.