Search results
Results from the WOW.Com Content Network
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
One must multiply the leftmost digit of the original number by 3, add the next digit, take the remainder when divided by 7, and continue from the beginning: multiply by 3, add the next digit, etc. For example, the number 371: 3×3 + 7 = 16 remainder 2, and 2×3 + 1 = 7. This method can be used to find the remainder of division by 7.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
The division with remainder or Euclidean division of two natural numbers provides an integer quotient, which is the number of times the second number is completely contained in the first number, and a remainder, which is the part of the first number that remains, when in the course of computing the quotient, no further full chunk of the size of ...
This remainder carries forward when the process is repeated on the following digit of the dividend (notated as 'bringing down' the next digit to the remainder). When all digits have been processed and no remainder is left, the process is complete. An example is shown below, representing the division of 500 by 4 (with a result of 125).
Classical modular multiplication reduces the double-width product ab using division by N and keeping only the remainder. This division requires quotient digit estimation and correction. The Montgomery form, in contrast, depends on a constant R > N which is coprime to N, and the only division necessary in Montgomery multiplication is division by R.
A number that does not evenly divide but leaves a remainder is sometimes called an aliquant part of . An integer n > 1 {\displaystyle n>1} whose only proper divisor is 1 is called a prime number . Equivalently, a prime number is a positive integer that has exactly two positive factors: 1 and itself.
Now multiply each digit of the divisor by the new digit of the quotient and subtract the result from the left-hand segment of the dividend. Where the subtrahend and the dividend segment differ, cross out the dividend digit and write if necessary the difference (remainder) in the next vertical empty space. Cross out the divisor digit used.