Search results
Results from the WOW.Com Content Network
For example, a walkie-talkie or a DECT phone or so-called TDD 4G or 5G phones requires only a single frequency for bidirectional communication, while a cell phone in the so-called FDD mode is a full-duplex device, and generally requires two frequencies to carry the two simultaneous voice channels, one in each direction.
In a full-duplex system, both users can communicate at the same time. A telephone is the most common example of a full-duplex system because both users can speak and be heard at the same time on each end. Some types of full-duplexing methods are: Time-division duplex (TDD) Frequency-division duplex (FDD) Echo cancellation
RS-485, like RS-422, can be made full-duplex by using four wires. [8] Since RS-485 is a multi-point specification, however, this is not necessary or desirable in many cases. RS-485 and RS-422 can interoperate with certain restrictions. [9] [failed verification]
The effect of a duplex mismatch is a link that operates inefficiently. Duplex mismatch may be caused by manually setting two connected network interfaces at different duplex modes or by connecting a device that performs autonegotiation to one that is manually set to a full duplex mode. [1]
Duplex mismatch may be inadvertently caused when an administrator configures an interface to a fixed mode (e.g. 100 Mbit/s full-duplex) and fails to configure the remote interface, leaving it set to autonegotiate. Then, when the auto-negotiation process fails, half-duplex is assumed by the autonegotiating side of the link.
In full-duplex mode, both devices can transmit and receive to and from each other at the same time, and there is no collision domain. [44] This doubles the aggregate bandwidth of the link and is sometimes advertised as double the link speed (for example, 200 Mbit/s for Fast Ethernet).
A full-duplex mode is also specified and in practice, all modern networks use Ethernet switches and operate in full-duplex mode, even as legacy devices that use half duplex still exist. A Fast Ethernet adapter can be logically divided into a media access controller (MAC), which deals with the higher-level issues of medium availability, and a ...
1000BASE-ZX is a non-standard but multi-vendor [31] term to refer to Gigabit Ethernet transmission using 1,550 nm wavelength to achieve distances of at least 70 km (43 mi) over single-mode fiber. Some vendors specify distances up to 120 km (75 mi) over single-mode fiber, sometimes called 1000BASE-EZX.