enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  3. Attention Is All You Need - Wikipedia

    en.wikipedia.org/wiki/Attention_Is_All_You_Need

    One of its two networks has "fast weights" or "dynamic links" (1981). [15] [16] [17] A slow neural network learns by gradient descent to generate keys and values for computing the weight changes of the fast neural network which computes answers to queries. [14] This was later shown to be equivalent to the unnormalized linear Transformer. [18] [19]

  4. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    [4] [5] It is an artificial neural network that is used in natural language processing by machines. [6] It is based on the transformer deep learning architecture, pre-trained on large data sets of unlabeled text, and able to generate novel human-like content.

  5. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    [19] [20] [21] A slow neural network learns by gradient descent to generate keys and values for computing the weight changes of the fast neural network which computes answers to queries. [17] This was later shown to be equivalent to the unnormalized linear Transformer. [22] A follow-up paper developed a similar system with active weight ...

  6. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [ 1 ] [ 2 ] Like the original Transformer model, [ 3 ] T5 models are encoder-decoder Transformers , where the encoder processes the input text, and the decoder generates the output text.

  7. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    Bidirectional encoder representations from transformers (BERT) is a language model introduced in October 2018 by researchers at Google. [ 1 ] [ 2 ] It learns to represent text as a sequence of vectors using self-supervised learning .

  8. A neural network learns in a bottom-up way: It takes in a large number of examples while being trained and from the patterns in those examples infers a rule that seems to best account for the ...

  9. GPT-2 - Wikipedia

    en.wikipedia.org/wiki/GPT-2

    GPT-2 has, like its predecessor GPT-1 and its successors GPT-3 and GPT-4, a generative pre-trained transformer architecture, implementing a deep neural network, specifically a transformer model, [6] which uses attention instead of older recurrence- and convolution-based architectures.