enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Phases of ice - Wikipedia

    en.wikipedia.org/wiki/Phases_of_ice

    Water molecules in ice I h are surrounded by four semi-randomly directed hydrogen bonds. Such arrangements should change to the more ordered arrangement of hydrogen bonds found in ice XI at low temperatures, so long as localized proton hopping is sufficiently enabled; a process that becomes easier with increasing pressure. [104]

  3. Phase diagram - Wikipedia

    en.wikipedia.org/wiki/Phase_diagram

    This occurs because ice (solid water) is less dense than liquid water, as shown by the fact that ice floats on water. At a molecular level, ice is less dense because it has a more extensive network of hydrogen bonding which requires a greater separation of water molecules. [6] Other exceptions include antimony and bismuth. [8] [9]

  4. Ice - Wikipedia

    en.wikipedia.org/wiki/Ice

    Subsequent research suggested that ice molecules at the interface cannot properly bond with the molecules of the mass of ice beneath (and thus are free to move like molecules of liquid water). These molecules remain in a semi-liquid state, providing lubrication regardless of pressure against the ice exerted by any object.

  5. Electromagnetic absorption by water - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_absorption...

    Liquid water and ice emit radiation at a higher rate than water vapour (see graph above). Water at the top of the troposphere, particularly in liquid and solid states, cools as it emits net photons to space. Neighboring gas molecules other than water (e.g. nitrogen) are cooled by passing their heat kinetically to the water.

  6. Phase (matter) - Wikipedia

    en.wikipedia.org/wiki/Phase_(matter)

    This unusual feature of water is related to ice having a lower density than liquid water. Increasing the pressure drives the water into the higher density phase, which causes melting. Another interesting though not unusual feature of the phase diagram is the point where the solid–liquid phase line meets the liquid–gas phase line.

  7. Phase transition - Wikipedia

    en.wikipedia.org/wiki/Phase_transition

    Familiar examples are the melting of ice or the boiling of water (the water does not instantly turn into vapor, but forms a turbulent mixture of liquid water and vapor bubbles). Yoseph Imry and Michael Wortis showed that quenched disorder can broaden a first-order transition. That is, the transformation is completed over a finite range of ...

  8. Properties of water - Wikipedia

    en.wikipedia.org/wiki/Properties_of_water

    Water molecules stay close to each other , due to the collective action of hydrogen bonds between water molecules. These hydrogen bonds are constantly breaking, with new bonds being formed with different water molecules; but at any given time in a sample of liquid water, a large portion of the molecules are held together by such bonds. [61]

  9. Ice rules - Wikipedia

    en.wikipedia.org/wiki/Ice_rules

    In 1935, Linus Pauling used the ice rules to calculate the residual entropy (zero temperature entropy) of ice I h. [3] For this (and other) reasons the rules are sometimes mis-attributed and referred to as "Pauling's ice rules" (not to be confused with Pauling's rules for ionic crystals). A nice figure of the resulting structure can be found in ...