Search results
Results from the WOW.Com Content Network
A rectangular grid (top) and its image under a conformal map f (bottom). It is seen that f maps pairs of lines intersecting at 90° to pairs of curves still intersecting at 90°. A conformal map is a function which preserves angles locally. In the most common case the function has a domain and range in the complex plane. More formally, a map,
Let f : Γ → Γ be a combinatorial map and let E be the set of oriented edges of Γ. Then f determines its derivative map Df : E → E where for every edge e Df(e) is the initial edge of the path f(e). The map Df naturally extends to the map Df : T → T where T is the set of all turns in Γ.
In mathematics, a chaotic map is a map (an evolution function) that exhibits some sort of chaotic behavior. Maps may be parameterized by a discrete-time or a continuous-time parameter. Maps may be parameterized by a discrete-time or a continuous-time parameter.
These are properties of the logistic map for most values of r between about 3.57 and 4 (as noted above). [ May, Robert M. (1976) 1 ] A common source of such sensitivity to initial conditions is that the map represents a repeated folding and stretching of the space on which it is defined.
A map is a function, as in the association of any of the four colored shapes in X to its color in Y In mathematics , a map or mapping is a function in its general sense. [ 1 ] These terms may have originated as from the process of making a geographical map : mapping the Earth surface to a sheet of paper.
The commutativity of this diagram is the universality of the projection π, for any map f and set X.. Generally, a mapping where the domain and codomain are the same set (or mathematical structure) is a projection if the mapping is idempotent, which means that a projection is equal to its composition with itself.
The circle inversion map is anticonformal, which means that at every point it preserves angles and reverses orientation (a map is called conformal if it preserves oriented angles). Algebraically, a map is anticonformal if at every point the Jacobian is a scalar times an orthogonal matrix with negative determinant: in two dimensions the Jacobian ...
In Arnold's native Russian, the map is known as "okroshka (cold soup) from a cat" (Russian: окрошка из кошки), in reference to the map's mixing properties, and which forms a play on words. Arnold later wrote that he found the name "Arnold's Cat" by which the map is known in English and other languages to be "strange". [2]