Search results
Results from the WOW.Com Content Network
The principle of minimum energy is essentially a restatement of the second law of thermodynamics. It states that for a closed system, with constant external parameters and entropy, the internal energy will decrease and approach a minimum value at equilibrium. External parameters generally means the volume, but may include other parameters which ...
In the field of computational chemistry, energy minimization (also called energy optimization, geometry minimization, or geometry optimization) is the process of finding an arrangement in space of a collection of atoms where, according to some computational model of chemical bonding, the net inter-atomic force on each atom is acceptably close to zero and the position on the potential energy ...
By the principle of minimum energy, there are a number of other state functions which may be defined which have the dimensions of energy and which are minimized according to the second law under certain conditions other than constant entropy. These are called thermodynamic potentials. For each such potential, the relevant fundamental equation ...
The minimum total potential energy principle is a fundamental concept used in physics and engineering.It dictates that at low temperatures a structure or body shall deform or displace to a position that (locally) minimizes the total potential energy, with the lost potential energy being converted into kinetic energy (specifically heat).
In particular: (see principle of minimum energy for a derivation) [8] When the entropy S and "external parameters" (e.g. volume) of a closed system are held constant, the internal energy U decreases and reaches a minimum value at equilibrium. This follows from the first and second laws of thermodynamics and is called the principle of minimum ...
The uncertainty principle requires every quantum mechanical system to have a fluctuating zero-point energy greater than the minimum of its classical potential well. This results in motion even at absolute zero. For example, liquid helium does not freeze under atmospheric pressure regardless of temperature due to its zero-point energy.
The Newtonian and action-principle forms are equivalent, and either one can solve the same problems, but selecting the appropriate form will make solutions much easier. The energy function in the action principles is not the total energy (conserved in an isolated system), but the Lagrangian, the difference between kinetic and potential energy ...
Landauer's principle is a physical principle pertaining to the lower theoretical limit of energy consumption of computation. It holds that an irreversible change in information stored in a computer, such as merging two computational paths, dissipates a minimum amount of heat to its surroundings. [1] The principle was first proposed by Rolf ...