enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    The resulting geometrical figure of circle and tangent line has a reflection symmetry about the axis of the radius. By the power-of-a-point theorem, the product of lengths PM · PN for any ray PMN equals to the square of PT, the length of the tangent line segment (red).

  3. Circle packing theorem - Wikipedia

    en.wikipedia.org/wiki/Circle_packing_theorem

    The intersection graph of a circle packing is the graph having a vertex for each circle, and an edge for every pair of circles that are tangent. If the circle packing is on the plane, or, equivalently, on the sphere, then its intersection graph is called a coin graph ; more generally, intersection graphs of interior-disjoint geometric objects ...

  4. Tangent circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_circles

    In geometry, tangent circles (also known as kissing circles) are circles in a common plane that intersect in a single point. There are two types of tangency : internal and external. Many problems and constructions in geometry are related to tangent circles; such problems often have real-life applications such as trilateration and maximizing the ...

  5. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry , a circular segment or disk segment (symbol: ⌓ ) is a region of a disk [ 1 ] which is "cut off" from the rest of the disk by a straight line.

  6. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have. In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this ...

  7. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    Since it is straightforward to calculate the length of each linear segment (using the Pythagorean theorem in Euclidean space, for example), the total length of the approximation can be found by summation of the lengths of each linear segment; that approximation is known as the (cumulative) chordal distance. [1]

  8. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the incenter and its radius is called the inradius. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called circumscribable quadrilaterals , circumscribing quadrilaterals , and circumscriptible ...

  9. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    To construct the inverse P ' of a point P outside a circle Ø: Draw the segment from O (center of circle Ø) to P. Let M be the midpoint of OP. (Not shown) Draw the circle c with center M going through P. (Not labeled. It's the blue circle) Let N and N ' be the points where Ø and c intersect. Draw segment NN '. P ' is where OP and NN ' intersect.