enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Deep reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Deep_reinforcement_learning

    Various techniques exist to train policies to solve tasks with deep reinforcement learning algorithms, each having their own benefits. At the highest level, there is a distinction between model-based and model-free reinforcement learning, which refers to whether the algorithm attempts to learn a forward model of the environment dynamics.

  3. Neuroevolution - Wikipedia

    en.wikipedia.org/wiki/Neuroevolution

    Neuroevolution is commonly used as part of the reinforcement learning paradigm, and it can be contrasted with conventional deep learning techniques that use backpropagation (gradient descent on a neural network) with a fixed topology.

  4. Neuroevolution of augmenting topologies - Wikipedia

    en.wikipedia.org/wiki/Neuroevolution_of...

    The competing conventions problem arises when there is more than one way of representing information in a phenotype. For example, if a genome contains neurons A, B and C and is represented by [A B C], if this genome is crossed with an identical genome (in terms of functionality) but ordered [C B A] crossover will yield children that are missing information ([A B A] or [C B C]), in fact 1/3 of ...

  5. Reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning

    Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...

  6. Reinforcement learning from human feedback - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning...

    In machine learning, reinforcement learning from human feedback (RLHF) is a technique to align an intelligent agent with human preferences. It involves training a reward model to represent preferences, which can then be used to train other models through reinforcement learning .

  7. Richard S. Sutton - Wikipedia

    en.wikipedia.org/wiki/Richard_S._Sutton

    He led the institution's Reinforcement Learning and Artificial Intelligence Laboratory until 2018. [6] [3] While retaining his professorship, Sutton joined Deepmind in June 2017 as a distinguished research scientist and co-founder of its Edmonton office. [4] [7] [8] Sutton became a Canadian citizen in 2015 and renounced his US citizenship [8 ...

  8. Ex-Google CEO Eric Schmidt says human operators need to have ...

    www.aol.com/ex-google-ceo-eric-schmidt-163658792...

    AI drones are a growing trend in military innovation, as is tech to counter them. Former Google CEO Eric Schmidt says AI drones are the future of warfare but that human operators will need to ...

  9. Proximal policy optimization - Wikipedia

    en.wikipedia.org/wiki/Proximal_Policy_Optimization

    Proximal policy optimization (PPO) is a reinforcement learning (RL) algorithm for training an intelligent agent's decision function to accomplish difficult tasks. PPO was developed by John Schulman in 2017, [1] and had become the default RL algorithm at the US artificial intelligence company OpenAI. [2]