Search results
Results from the WOW.Com Content Network
For a black body (a perfect absorber) there is no reflected radiation, and so the spectral radiance is entirely due to emission. In addition, a black body is a diffuse emitter (its emission is independent of direction). Blackbody radiation becomes a visible glow of light if the temperature of the object is high enough. [19]
A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The radiation emitted by a black body in thermal equilibrium with its environment is called black-body radiation. The name "black body" is given because it absorbs all colors of light.
The importance of the Lummer and Kurlbaum cavity radiation source was that it was an experimentally accessible source of black-body radiation, as distinct from radiation from a simply exposed incandescent solid body, which had been the nearest available experimental approximation to black-body radiation over a suitable range of temperatures.
Planckian locus in the CIE 1931 chromaticity diagram. In physics and color science, the Planckian locus or black body locus is the path or locus that the color of an incandescent black body would take in a particular chromaticity space as the blackbody temperature changes.
This diagram ignores the brightness of the radiation. all the colours are normalized to full brightness. This is because of the limited range of intensities possible with computer screens. To give a true indication of intensity, if the colour at 1000 were reduced to nearly black, at 10000K the intensity would be so strong as to instantly blind ...
The temperature of stars other than the Sun can be approximated using a similar means by treating the emitted energy as a black body radiation. [28] So: L = 4 π R 2 σ T 4 {\displaystyle L=4\pi R^{2}\sigma T^{4}} where L is the luminosity , σ is the Stefan–Boltzmann constant, R is the stellar radius and T is the effective temperature .
The surface of a perfect black body (with an emissivity of 1) emits thermal radiation at the rate of approximately 448 watts per square metre (W/m 2) at a room temperature of 25 °C (298 K; 77 °F). Objects have emissivities less than 1.0, and emit radiation at correspondingly lower rates.
A black body is characterized by its temperature and emits light of a specific hue, which is referred to as color temperature. [ 3 ] [ 4 ] [ 5 ] In practice, light sources that approximate Planckian radiators, such as certain fluorescent or high-intensity discharge lamps, are assessed based on their CCT, which is the temperature of a Planckian ...