Search results
Results from the WOW.Com Content Network
The paper was accompanied by a software package written in TensorFlow release on GitHub. [10] It was reimplemented in PyTorch by lucidrains. [11] [12] On December 20, 2021, the LDM paper was published on arXiv, [13] and both Stable Diffusion [14] and LDM [15] repositories were published on GitHub. However, they remained roughly the same.
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]
Face detection is a computer technology being used in a variety of applications that identifies human faces in digital images. [1] Face detection also refers to the psychological process by which humans locate and attend to faces in a visual scene.
Face detection is a binary classification problem combined with a localization problem: given a picture, decide whether it contains faces, and construct bounding boxes for the faces. To make the task more manageable, the Viola–Jones algorithm only detects full view (no occlusion), frontal (no head-turning), upright (no rotation), well-lit ...
A direct predecessor of the StyleGAN series is the Progressive GAN, published in 2017. [9]In December 2018, Nvidia researchers distributed a preprint with accompanying software introducing StyleGAN, a GAN for producing an unlimited number of (often convincing) portraits of fake human faces.
Facial recognition software at a US airport Automatic ticket gate with face recognition system in Osaka Metro Morinomiya Station. A facial recognition system [1] is a technology potentially capable of matching a human face from a digital image or a video frame against a database of faces.
Eigenface provides an easy and cheap way to realize face recognition in that: Its training process is completely automatic and easy to code. Eigenface adequately reduces statistical complexity in face image representation. Once eigenfaces of a database are calculated, face recognition can be achieved in real time.
The first alpha version of OpenCV was released to the public at the IEEE Conference on Computer Vision and Pattern Recognition in 2000, and five betas were released between 2001 and 2005. The first 1.0 version was released in 2006. A version 1.1 "pre-release" was released in October 2008.