enow.com Web Search

  1. Ad

    related to: solving systems of inequalities graphing

Search results

  1. Results from the WOW.Com Content Network
  2. Linear inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_inequality

    Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]

  3. Inequality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Inequality_(mathematics)

    Systems of linear inequalities can be simplified by Fourier–Motzkin elimination. [ 17 ] The cylindrical algebraic decomposition is an algorithm that allows testing whether a system of polynomial equations and inequalities has solutions, and, if solutions exist, describing them.

  4. Farkas' lemma - Wikipedia

    en.wikipedia.org/wiki/Farkas'_lemma

    In mathematics, Farkas' lemma is a solvability theorem for a finite system of linear inequalities. It was originally proven by the Hungarian mathematician Gyula Farkas . [ 1 ] Farkas' lemma is the key result underpinning the linear programming duality and has played a central role in the development of mathematical optimization (alternatively ...

  5. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    Two linear systems using the same set of variables are equivalent if each of the equations in the second system can be derived algebraically from the equations in the first system, and vice versa. Two systems are equivalent if either both are inconsistent or each equation of each of them is a linear combination of the equations of the other one.

  6. Overdetermined system - Wikipedia

    en.wikipedia.org/wiki/Overdetermined_system

    Consider the system of linear equations: L i = 0 for 1 ≤ i ≤ M, and variables X 1, X 2, ..., X N, where each L i is a weighted sum of the X i s. Then X 1 = X 2 = ⋯ = X N = 0 is always a solution. When M < N the system is underdetermined and there are always an infinitude of further solutions.

  7. Matching polytope - Wikipedia

    en.wikipedia.org/wiki/Matching_polytope

    Each corner of FMP(G) satisfies a set of m linearly-independent inequalities with equality. Therefore, to calculate the corner coordinates we have to solve a system of equations defined by a square submatrix of A G. By Cramer's rule, the solution is a rational number in which the denominator is the determinant of this submatrix. This ...

  8. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    However, some problems have distinct optimal solutions; for example, the problem of finding a feasible solution to a system of linear inequalities is a linear programming problem in which the objective function is the zero function (i.e., the constant function taking the value zero everywhere).

  9. Fourier–Motzkin elimination - Wikipedia

    en.wikipedia.org/wiki/Fourier–Motzkin_elimination

    However, the elimination process results in a new system that possibly contains more inequalities than the original. Yet, often some of the inequalities in the reduced system are redundant. Redundancy may be implied by other inequalities or by inequalities in information theory (a.k.a. Shannon type inequalities).

  1. Ad

    related to: solving systems of inequalities graphing