Search results
Results from the WOW.Com Content Network
The arithmetic mean, or less precisely the average, of a list of n numbers x 1, x 2, . . . , x n is the sum of the numbers divided by n: + + +. The geometric mean is similar, except that it is only defined for a list of nonnegative real numbers, and uses multiplication and a root in place of addition and division:
For example, the geometric mean of 2 and 3 is 2.45, while their arithmetic mean is 2.5. In particular, this means that when a set of non-identical numbers is subjected to a mean-preserving spread — that is, the elements of the set are "spread apart" more from each other while leaving the arithmetic mean unchanged — their geometric mean ...
In mathematics, the arithmetic–geometric mean (AGM or agM [1]) of two positive real numbers x and y is the mutual limit of a sequence of arithmetic means and a sequence of geometric means. The arithmetic–geometric mean is used in fast algorithms for exponential, trigonometric functions, and other special functions, as well as some ...
The arithmetic mean can be similarly defined for vectors in multiple dimensions, not only scalar values; this is often referred to as a centroid. More generally, because the arithmetic mean is a convex combination (meaning its coefficients sum to ), it can be defined on a convex space, not only a vector space.
In mathematics, the QM-AM-GM-HM inequalities, also known as the mean inequality chain, state the relationship between the harmonic mean, geometric mean, arithmetic mean, and quadratic mean (also known as root mean square). Suppose that ,, …, are positive real numbers. Then
The arithmetic mean (or simply mean or average) of a list of numbers, is the sum of all of the numbers divided by their count.Similarly, the mean of a sample ,, …,, usually denoted by ¯, is the sum of the sampled values divided by the number of items in the sample.
A geometric construction of the quadratic mean and the Pythagorean means (of two numbers a and b). Harmonic mean denoted by H, geometric by G, arithmetic by A and quadratic mean (also known as root mean square) denoted by Q. Comparison of the arithmetic, geometric and harmonic means of a pair of numbers.
In mathematics, generalized means (or power mean or Hölder mean from Otto Hölder) [1] are a family of functions for aggregating sets of numbers. These include as special cases the Pythagorean means ( arithmetic , geometric , and harmonic means ).