enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial options pricing model - Wikipedia

    en.wikipedia.org/wiki/Binomial_options_pricing_model

    The binomial model assumes that movements in the price follow a binomial distribution; for many trials, this binomial distribution approaches the log-normal distribution assumed by Black–Scholes. In this case then, for European options without dividends, the binomial model value converges on the Black–Scholes formula value as the number of ...

  3. Lattice model (finance) - Wikipedia

    en.wikipedia.org/wiki/Lattice_model_(finance)

    The simplest lattice model is the binomial options pricing model; [7] the standard ("canonical" [8]) method is that proposed by Cox, Ross and Rubinstein (CRR) in 1979; see diagram for formulae. Over 20 other methods have been developed, [ 9 ] with each "derived under a variety of assumptions" as regards the development of the underlying's price ...

  4. Monte Carlo methods in finance - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_methods_in_finance

    For more than three or four state variables, formulae such as Black–Scholes (i.e. analytic solutions) do not exist, while other numerical methods such as the Binomial options pricing model and finite difference methods face several difficulties and are not practical. In these cases, Monte Carlo methods converge to the solution more quickly ...

  5. Valuation of options - Wikipedia

    en.wikipedia.org/wiki/Valuation_of_options

    In finance, a price (premium) is paid or received for purchasing or selling options.This article discusses the calculation of this premium in general. For further detail, see: Mathematical finance § Derivatives pricing: the Q world for discussion of the mathematics; Financial engineering for the implementation; as well as Financial modeling § Quantitative finance generally.

  6. Finite difference methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_methods...

    The approach arises since the evolution of the option value can be modelled via a partial differential equation (PDE), as a function of (at least) time and price of underlying; see for example the Black–Scholes PDE. Once in this form, a finite difference model can be derived, and the valuation obtained.

  7. Monte Carlo methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_methods_for...

    In mathematical finance, a Monte Carlo option model uses Monte Carlo methods [Notes 1] to calculate the value of an option with multiple sources of uncertainty or with complicated features. [1] The first application to option pricing was by Phelim Boyle in 1977 (for European options ).

  8. How implied volatility works with options trading

    www.aol.com/finance/implied-volatility-works...

    The price of this option is influenced by multiple factors, including the stock’s current price, the option’s strike price, time to expiration and implied volatility.

  9. Stephen Ross (economist) - Wikipedia

    en.wikipedia.org/wiki/Stephen_Ross_(economist)

    Ross is best known for the development of the arbitrage pricing theory (mid-1970s) as well as for his role in developing the binomial options pricing model (1979; also known as the Cox–Ross–Rubinstein model). He was an initiator of the fundamental financial concept of risk-neutral pricing.