Search results
Results from the WOW.Com Content Network
A repfigit, or Keith number, is an integer such that, when its digits start a Fibonacci sequence with that number of digits, the original number is eventually reached. An example is 47, because the Fibonacci sequence starting with 4 and 7 (4, 7, 11, 18, 29, 47) reaches 47. A repfigit can be a tribonacci sequence if there are 3 digits in the ...
When eager evaluation is desirable (primarily when the sequence is finite, as otherwise evaluation will never terminate), one can either convert to a list, or use a parallel construction that creates a list instead of a generator. For example, in Python a generator g can be evaluated to a list l via l = list(g), while in F# the sequence ...
The penultimate bit is the most significant bit and the first bit is the least significant bit. Also, leading zeros cannot be omitted as they can be in, for example, decimal numbers. The first few Fibonacci codes are shown below, and also their so-called implied probability, the value for each number that has a minimum-size code in Fibonacci ...
If the condition is true, then the lines of code inside the loop are executed. The advancement to the next iteration part is performed exactly once every time the loop ends. The loop is then repeated if the condition evaluates to true. Here is an example of the C-style traditional for-loop in Java.
A Lagged Fibonacci generator (LFG or sometimes LFib) is an example of a pseudorandom number generator. This class of random number generator is aimed at being an improvement on the 'standard' linear congruential generator. These are based on a generalisation of the Fibonacci sequence. The Fibonacci sequence may be described by the recurrence ...
Fibonacci numbers are used in a polyphase version of the merge sort algorithm in which an unsorted list is divided into two lists whose lengths correspond to sequential Fibonacci numbers—by dividing the list so that the two parts have lengths in the approximate proportion φ.
The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values. [1] This produces a sequence where the ratios of successive terms approach the golden ratio, and in fact the terms themselves are roundings of integer powers of the golden ...
For example, for n = 10 the extra cycles include those for n = 2 multiplied by 5, and for n = 5 multiplied by 2. Table of the extra cycles: (the original Fibonacci cycles are excluded) (using X and E for ten and eleven, respectively)