enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis.Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [1]

  3. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    Word2vec is a technique in natural language processing (NLP) for obtaining vector representations of words. These vectors capture information about the meaning of the word based on the surrounding words. The word2vec algorithm estimates these representations by modeling text in a large corpus.

  4. fastText - Wikipedia

    en.wikipedia.org/wiki/FastText

    fastText is a library for learning of word embeddings and text classification created by ... Several papers describe the techniques used by fastText. [9] [10] [11 ...

  5. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    BERT considers the words surrounding the target word fine from the left and right side. However it comes at a cost: due to encoder-only architecture lacking a decoder, BERT can't be prompted and can't generate text , while bidirectional models in general do not work effectively without the right side, thus being difficult to prompt.

  6. ELMo - Wikipedia

    en.wikipedia.org/wiki/ELMo

    ELMo (embeddings from language model) is a word embedding method for representing a sequence of words as a corresponding sequence of vectors. [1] It was created by researchers at the Allen Institute for Artificial Intelligence , [ 2 ] and University of Washington and first released in February, 2018.

  7. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    Word2vec is a word embedding technique which learns to represent words through self-supervision over each word and its neighboring words in a sliding window across a large corpus of text. [28] The model has two possible training schemes to produce word vector representations, one generative and one contrastive. [27]

  8. Latent space - Wikipedia

    en.wikipedia.org/wiki/Latent_space

    Here are some commonly used embedding models: Word2Vec: [4] Word2Vec is a popular embedding model used in natural language processing (NLP). It learns word embeddings by training a neural network on a large corpus of text. Word2Vec captures semantic and syntactic relationships between words, allowing for meaningful computations like word analogies.

  9. Bag-of-words model - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model

    The bag-of-words model (BoW) is a model of text which uses a representation of text that is based on an unordered collection (a "bag") of words. It is used in natural language processing and information retrieval (IR). It disregards word order (and thus most of syntax or grammar) but captures multiplicity.