enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for

  3. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    Every sequence of digits, in any base, is the sequence of initial digits of some factorial number in that base. [ 60 ] Another result on divisibility of factorials, Wilson's theorem , states that ( n − 1 ) ! + 1 {\displaystyle (n-1)!+1} is divisible by n {\displaystyle n} if and only if n {\displaystyle n} is a prime number . [ 52 ]

  4. Factorion - Wikipedia

    en.wikipedia.org/wiki/Factorion

    A natural number is a sociable factorion if it is a periodic point for , where ⁡ = for a positive integer, and forms a cycle of period . A factorion is a sociable factorion with k = 1 {\displaystyle k=1} , and a amicable factorion is a sociable factorion with k = 2 {\displaystyle k=2} .

  5. Factorial (disambiguation) - Wikipedia

    en.wikipedia.org/wiki/Factorial_(disambiguation)

    The factorial of a number is ! = (), the product of positive integers up to . Factorial may also refer to: Factorial experiment, a statistical experiment over all combinations of values; Factorial code, data representation by independent components

  6. LeetCode - Wikipedia

    en.wikipedia.org/wiki/LeetCode

    LeetCode LLC, doing business as LeetCode, is an online platform for coding interview preparation. The platform provides coding and algorithmic problems intended for users to practice coding . [ 1 ] LeetCode has gained popularity among job seekers in the software industry and coding enthusiasts as a resource for technical interviews and coding ...

  7. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    De Moivre gave an approximate rational-number expression for the natural logarithm of the constant. Stirling's contribution consisted of showing that the constant is precisely 2 π {\displaystyle {\sqrt {2\pi }}} .

  8. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    n > 0 is the number of letters in the alphabet (e.g., 26 in English) the falling factorial = (+) denotes the number of strings of length k that don't use any character twice. n! denotes the factorial of n; e = 2.718... is Euler's number; For n = 26, this comes out to 1096259850353149530222034277.

  9. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A factorial x! is the product of all numbers from 1 to x. The first: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600 (sequence A000142 in the OEIS). 0! = 1 is sometimes included. A k-smooth number (for a natural number k) has its prime factors ≤ k (so it is also j-smooth for any j > k).