Search results
Results from the WOW.Com Content Network
The ordinate y of the Mercator projection becomes infinite at the poles and the map must be truncated at some latitude less than ninety degrees. This need not be done symmetrically. Mercator's original map is truncated at 80°N and 66°S with the result that European countries were moved toward the centre of the map.
(That is, the reciprocal of the cosine of the latitude become infinite). He therefore uses a completely different projection for the inset map of the north polar regions: an azimuthal equidistant projection. It took many years for Mercator's projection to gain wider acceptance. The following gallery shows the first maps in which it was employed.
This transverse, ellipsoidal form of the Mercator is finite, unlike the equatorial Mercator. Forms the basis of the Universal Transverse Mercator coordinate system. 1922 Roussilhe oblique stereographic: Henri Roussilhe 1903 Hotine oblique Mercator Cylindrical Conformal M. Rosenmund, J. Laborde, Martin Hotine 1855 Gall stereographic: Cylindrical
The Mercator projection shows rhumbs as straight lines. A rhumb is a course of constant bearing. Bearing is the compass direction of movement. A normal cylindrical projection is any projection in which meridians are mapped to equally spaced vertical lines and circles of latitude (parallels) are mapped to horizontal lines.
Gerardus Mercator (/ dʒ ɪ ˈ r ɑːr d ə s m ɜːr ˈ k eɪ t ər /; [a] [b] [c] 5 March 1512 – 2 December 1594) [d] was a Flemish geographer, cosmographer and cartographer.He is most renowned for creating the 1569 world map based on a new projection which represented sailing courses of constant bearing (rhumb lines) as straight lines—an innovation that is still employed in nautical charts.
The Universal Transverse Mercator (UTM) is a map projection system for assigning coordinates to locations on the surface of the Earth. Like the traditional method of latitude and longitude , it is a horizontal position representation , which means it ignores altitude and treats the earth surface as a perfect ellipsoid .
Yet his projection remains the authority all the same. Today, when children learn geography in school, they might not see Mercator’s poorly proportioned countries and continents on a wall-mounted map. But they will likely see it through the glare of a screen: even Google Maps uses the Mercator projection.
The Mercator Projection, developed by Flemish geographer Gerardus Mercator, was widely used as the standard for two-dimensional world maps until the late 20th century, when more accurate projections were more widely used. Mercator also was the first to use and popularize the concept of the atlas: a collection of maps.