Search results
Results from the WOW.Com Content Network
Data can be lost when converting representations from floating-point to integer, as the fractional components of the floating-point values will be truncated (rounded toward zero). Conversely, precision can be lost when converting representations from integer to floating-point, since a floating-point type may be unable to exactly represent all ...
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
Converting a double-precision binary floating-point number to a decimal string is a common operation, but an algorithm producing results that are both accurate and minimal did not appear in print until 1990, with Steele and White's Dragon4.
In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [ 1 ] [ 2 ] It is also known as the shift-and-add -3 algorithm , and can be implemented using a small number of gates in computer hardware, but at the expense of high latency .
ILM was searching for an image format that could handle a wide dynamic range, but without the hard drive and memory cost of single or double precision floating point. [5] The hardware-accelerated programmable shading group led by John Airey at SGI (Silicon Graphics) used the s10e5 data type in 1997 as part of the 'bali' design effort.
convert double to posit; convert posit to double; cast unsigned integer to posit; It works for 16-bit posits with one exponent bit and 8-bit posit with zero exponent bit. Support for 32-bit posits and flexible type (2-32 bits with two exponent bits) is pending validation. It supports x86_64 systems.
There are three binary floating-point basic formats (encoded with 32, 64 or 128 bits) and two decimal floating-point basic formats (encoded with 64 or 128 bits). The binary32 and binary64 formats are the single and double formats of IEEE 754-1985 respectively. A conforming implementation must fully implement at least one of the basic formats.
However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers. In most implementations of PostScript, and some embedded systems, the only supported precision is single.