Search results
Results from the WOW.Com Content Network
Nonparametric statistics is a type of statistical analysis that makes minimal assumptions about the underlying distribution of the data being studied. Often these models are infinite-dimensional, rather than finite dimensional, as is parametric statistics . [ 1 ]
Assumptions, parametric and non-parametric: There are two groups of statistical tests, parametric and non-parametric. The choice between these two groups needs to be justified. The choice between these two groups needs to be justified.
Nonparametric regression is a category of regression analysis in which the predictor does not take a predetermined form but is constructed according to information derived from the data. That is, no parametric equation is assumed for the relationship between predictors and dependent variable.
Permutation tests are a subset of non-parametric statistics. Assuming that our experimental data come from data measured from two treatment groups, the method simply generates the distribution of mean differences under the assumption that the two groups are not distinct in terms of the measured variable.
Not all statistical packages support post-hoc analysis for Friedman's test, but user-contributed code exists that provides these facilities (for example in SPSS, [10] and in R. [11]). Also, there is a specialized package available in R containing numerous non-parametric methods for post-hoc analysis after Friedman. [12]
Analysis of similarities (ANOSIM) is a non-parametric statistical test widely used in the field of ecology.The test was first suggested by K. R. Clarke [1] as an ANOVA-like test, where instead of operating on raw data, operates on a ranked dissimilarity matrix.
It is a nonparametric test that tests the null hypothesis that the medians of the populations from which two or more samples are drawn are identical. The data in each sample are assigned to two groups, one consisting of data whose values are higher than the median value in the two groups combined, and the other consisting of data whose values ...
Cochran's test is a non-parametric statistical test to verify whether k treatments have identical effects in the analysis of two-way randomized block designs where the response variable is binary. [1] [2] [3] It is named after William Gemmell Cochran.