enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    The values below are standard apparent reduction potentials (E°') for electro-biochemical half-reactions measured at 25 °C, 1 atmosphere and a pH of 7 in aqueous solution. [1] [2] The actual physiological potential depends on the ratio of the reduced (Red) and oxidized (Ox) forms according to the Nernst equation and the thermal voltage.

  3. Nitroreductase - Wikipedia

    en.wikipedia.org/wiki/Nitroreductase

    Members of this family include oxygen-insensitive NAD(P)H nitroreductase (flavin mononucleotide-dependent nitroreductase) (6,7-dihydropteridine reductase) (EC 1.5.1.34) and NADH dehydrogenase (EC 1.6.99.3). A number of these proteins are described as oxidoreductases.

  4. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...

  5. NDH-2 - Wikipedia

    en.wikipedia.org/wiki/NDH-2

    Enzymatic reaction catalyzed by NDH-2. In yellow is represented the protein surface, sitting in the membrane (in gray) NDH-2, also known as type II NADH:quinone oxidoreductase or alternative NADH dehydrogenase, is an enzyme (EC: 1.6.99.3) which catalyzes the electron transfer from NADH (electron donor) to a quinone (electron acceptor), being part of the electron transport chain. [1]

  6. Nicotinamide adenine dinucleotide - Wikipedia

    en.wikipedia.org/wiki/Nicotinamide_adenine_di...

    In rat liver, the total amount of NAD + and NADH is approximately 1 μmole per gram of wet weight, about 10 times the concentration of NADP + and NADPH in the same cells. [17] The actual concentration of NAD + in cell cytosol is harder to measure, with recent estimates in animal cells ranging around 0.3 mM , [ 18 ] [ 19 ] and approximately 1.0 ...

  7. Biosensor - Wikipedia

    en.wikipedia.org/wiki/Biosensor

    The main reasons for the common use of enzymes in biosensors are: 1) ability to catalyze a large number of reactions; 2) potential to detect a group of analytes (substrates, products, inhibitors, and modulators of the catalytic activity); and 3) suitability with several different transduction methods for detecting the analyte.

  8. NADH:ubiquinone reductase (non-electrogenic) - Wikipedia

    en.wikipedia.org/wiki/NADH:ubiquinone_reductase...

    The systematic name of this enzyme class is NADH:(quinone-acceptor) oxidoreductase. Other names in common use include reduced nicotinamide adenine dinucleotide (quinone) dehydrogenase , NADH-quinone oxidoreductase , NADH ubiquinone oxidoreductase , DPNH-menadione reductase , D-diaphorase , and NADH2 dehydrogenase (quinone) , and mitochondrial ...

  9. Glucose 1-dehydrogenase (NAD+) - Wikipedia

    en.wikipedia.org/wiki/Glucose_1-dehydrogenase_(NAD+)

    Thus, the two substrates of this enzyme are D-glucose and NAD +, whereas its 3 products are D-glucono-1,5-lactone, NADH, and H +. This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-OH group of donor with NAD + or NADP + as acceptor. The systematic name of this enzyme class is D-glucose:NAD + 1-oxidoreductase.