Search results
Results from the WOW.Com Content Network
Mean shift is a non-parametric feature-space mathematical analysis technique for locating the maxima of a density function, a so-called mode-seeking algorithm. [1] Application domains include cluster analysis in computer vision and image processing .
This category contains algorithms used for cluster analysis. Pages in category "Cluster analysis algorithms" ... Mean shift; N. Nearest-neighbor chain algorithm;
Due to the expensive iterative procedure and density estimation, mean-shift is usually slower than DBSCAN or k-Means. Besides that, the applicability of the mean-shift algorithm to multidimensional data is hindered by the unsmooth behaviour of the kernel density estimate, which results in over-fragmentation of cluster tails. [16]
An advantage of mean shift clustering over k-means is the detection of an arbitrary number of clusters in the data set, as there is not a parameter determining the number of clusters. Mean shift can be much slower than k -means, and still requires selection of a bandwidth parameter.
In statistics and signal processing, step detection (also known as step smoothing, step filtering, shift detection, jump detection or edge detection) is the process of finding abrupt changes (steps, jumps, shifts) in the mean level of a time series or signal.
For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a user-specified feature map: in contrast, kernel methods require only a user-specified kernel, i.e., a similarity function over all pairs of data points computed using inner products.
DBSCAN is also used as part of subspace clustering algorithms like PreDeCon and SUBCLU. HDBSCAN* [ 6 ] [ 7 ] is a hierarchical version of DBSCAN which is also faster than OPTICS, from which a flat partition consisting of the most prominent clusters can be extracted from the hierarchy.
The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri