Search results
Results from the WOW.Com Content Network
The reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, producing large amounts of energy (ATP). Respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. The overall reaction occurs in a series of biochemical steps, some of which are redox reactions.
Glycolysis is the metabolic pathway that converts glucose (C 6 H 12 O 6) into pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). [1]
The energy stored in the chemical bonds of glucose is released by the cell in the citric acid cycle, producing carbon dioxide and the energetic electron donors NADH and FADH. Oxidative phosphorylation uses these molecules and O 2 to produce ATP , which is used throughout the cell whenever energy is needed.
Overview of the citric acid cycle. The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle) [1] [2] —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol.
The energy is utilized to conduct biosynthesis, facilitate movement, and regulate active transport inside of the cell. [10]: 571 Examples of amphibolic pathways are the citric acid cycle and the glyoxylate cycle. These sets of chemical reactions contain both energy producing and utilizing pathways.
Most eukaryotic cells have mitochondria, which produce ATP from reactions of oxygen with products of the citric acid cycle, fatty acid metabolism, and amino acid metabolism. At the inner mitochondrial membrane , electrons from NADH and FADH 2 pass through the electron transport chain to oxygen, which provides the energy driving the process as ...
Simplified Theoretical Reaction: C 6 H 12 O 6 2C 3 H 6 O 3 + 2 ATP (120 kJ) [6] Lactic Acid Fermentation is commonly known as the process by which mammalian muscle cells produce energy in anaerobic environments, as in instances of great physical exertion, and is the simplest type of fermentation.
The enzyme is integrated into thylakoid membrane; the CF 1-part sticks into stroma, where dark reactions of photosynthesis (also called the light-independent reactions or the Calvin cycle) and ATP synthesis take place. The overall structure and the catalytic mechanism of the chloroplast ATP synthase are almost the same as those of the bacterial ...