Search results
Results from the WOW.Com Content Network
The metacentric height is an approximation for the vessel stability at a small angle (0-15 degrees) of heel. Beyond that range, the stability of the vessel is dominated by what is known as a righting moment. Depending on the geometry of the hull, naval architects must iteratively calculate the center of buoyancy at increasing angles of heel.
The concept of center of gravity or weight was studied extensively by the ancient Greek mathematician, physicist, and engineer Archimedes of Syracuse.He worked with simplified assumptions about gravity that amount to a uniform field, thus arriving at the mathematical properties of what we now call the center of mass.
One can further define a unique center of gravity by approximating the field as either parallel or spherically symmetric. The concept of a center of gravity as distinct from the center of mass is rarely used in applications, even in celestial mechanics, where non-uniform fields are important. Since the center of gravity depends on the external ...
Ship stability illustration explaining the stable and unstable dynamics of buoyancy (B), center of buoyancy (CB), center of gravity (CG), and weight (W) Ship stability is an area of naval architecture and ship design that deals with how a ship behaves at sea, both in still water and in waves, whether intact or damaged.
In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. [further explanation needed] The same definition extends to any object in -dimensional Euclidean space. [1]
h = the height of the semi-ellipsoid from the base cicle's center to the edge Solid paraboloid of revolution around z-axis: a = the radius of the base circle h = the height of the paboloid from the base cicle's center to the edge
An inclining test is a test performed on a ship to determine its stability, lightship weight and the coordinates of its center of gravity.The test is applied to newly constructed ships greater than 24m in length, and to ships altered in ways that could affect stability.
The center of gravity (CG) of an aircraft is the point over which the aircraft would balance. [1] Its position is calculated after supporting the aircraft on at least two sets of weighing scales or load cells and noting the weight shown on each set of scales or load cells. The center of gravity affects the stability of the aircraft.