Search results
Results from the WOW.Com Content Network
In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies).
A contact force is any force that occurs because of two objects making contact with each other. [1] Contact forces are very common and are responsible for most visible interactions between macroscopic collections of matter. Pushing a car or kicking a ball are some of the everyday examples where contact forces are at work.
A common visual representation of forces acting in concert is the free body diagram, which schematically portrays a body of interest and the forces applied to it by outside influences. [24] For example, a free body diagram of a block sitting upon an inclined plane can illustrate the combination of gravitational force, "normal" force , friction ...
The normal force, for example, is responsible for the structural integrity of tables and floors as well as being the force that responds whenever an external force pushes on a solid object. An example of the normal force in action is the impact force on an object crashing into an immobile surface. [4]: ch.12 [5]
If a and b are distances from the fulcrum to points A and B and the force F A applied to A is the input and the force F B applied at B is the output, the ratio of the velocities of points A and B is given by a/b, so the ratio of the output force to the input force, or mechanical advantage, is given by: = =.
In the example of a nail clipper on the right (a compound lever made of a class 2 and a class 3 lever), because the effort is applied vertically (that is, not perpendicular to the lever), distances to the respective fulcrums are measured horizontally, instead of along the lever. In this example, W/F is 7 + 1 / 1 × 6 / 6 + 2 = 6.
In mechanics, the net force is the sum of all the forces acting on an object. For example, if two forces are acting upon an object in opposite directions, and one force is greater than the other, the forces can be replaced with a single force that is the difference of the greater and smaller force. That force is the net force. [1]
This image is a derivative work of the following images: File:Force.png licensed with PD-self . 2007-12-28T22:31:03Z Penubag 316x316 (33426 Bytes) {{Information |Description= A few images illustrating forces |Source=self-made using compiled images within Wikipedia or created by me through MS Word |Date= 12/28/07 |Author= [[User:Penubag|Penubag]] |Permission= No rights r