enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Subset - Wikipedia

    en.wikipedia.org/wiki/Subset

    A is a subset of B (denoted ) and, conversely, B is a superset of A (denoted ). In mathematics, a set A is a subset of a set B if all elements of A are also elements of B; B is then a superset of A. It is possible for A and B to be equal; if they are unequal, then A is a proper subset of B.

  3. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A third pair of operators ⊂ and ⊃ are used differently by different authors: some authors use A ⊂ B and B ⊃ A to mean A is any subset of B (and not necessarily a proper subset), [33] [24] while others reserve A ⊂ B and B ⊃ A for cases where A is a proper subset of B. [31] Examples: The set of all humans is a proper subset of the set ...

  4. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    For instance, had been declared as a subset of , with the sets and not necessarily related to each other in any way, then would likely mean instead of . If it is needed then unless indicated otherwise, it should be assumed that X {\displaystyle X} denotes the universe set , which means that all sets that are used in the formula are subsets of X ...

  5. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    A is called a proper subset of B if and only if A is a subset of B, but A is not equal to B. Also, 1, 2, and 3 are members (elements) of the set {1, 2, 3}, but are not subsets of it; and in turn, the subsets, such as {1}, are not members of the set {1, 2, 3}. More complicated relations can exist; for example, the set {1} is both a member and a ...

  6. Naive set theory - Wikipedia

    en.wikipedia.org/wiki/Naive_set_theory

    If A is a subset of B, then one can also say that B is a superset of A, that A is contained in B, or that B contains A. In symbols, A ⊆ B means that A is a subset of B, and B ⊇ A means that B is a superset of A. Some authors use the symbols ⊂ and ⊃ for subsets, and others use these symbols only for proper subsets. For clarity, one can ...

  7. Dedekind-infinite set - Wikipedia

    en.wikipedia.org/wiki/Dedekind-infinite_set

    In mathematics, a set A is Dedekind-infinite (named after the German mathematician Richard Dedekind) if some proper subset B of A is equinumerous to A. Explicitly, this means that there exists a bijective function from A onto some proper subset B of A. A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists).

  8. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    Counting the empty set as a subset, a set with elements has a total of subsets, and the theorem holds because > for all non-negative integers. Much more significant is Cantor's discovery of an argument that is applicable to any set, and shows that the theorem holds for infinite sets also.

  9. Glossary of set theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_set_theory

    2. A proper subset of a set X is a subset not equal to X. 3. A proper forcing is a forcing notion that does not collapse any stationary set 4. The proper forcing axiom asserts that if P is proper and D α is a dense subset of P for each α<ω 1, then there is a filter G P such that D α ∩ G is nonempty for all α<ω 1